/**
* \file rsa.h * * \brief The RSA public-key cryptosystem * * Copyright (C) 2006-2010, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */#ifndef POLARSSL_RSA_H#define POLARSSL_RSA_H#include "bignum.h"
/*
* RSA Error codes */#define POLARSSL_ERR_RSA_BAD_INPUT_DATA -0x4080 /**< Bad input parameters to function. */#define POLARSSL_ERR_RSA_INVALID_PADDING -0x4100 /**< Input data contains invalid padding and is rejected. */#define POLARSSL_ERR_RSA_KEY_GEN_FAILED -0x4180 /**< Something failed during generation of a key. */#define POLARSSL_ERR_RSA_KEY_CHECK_FAILED -0x4200 /**< Key failed to pass the libraries validity check. */#define POLARSSL_ERR_RSA_PUBLIC_FAILED -0x4280 /**< The public key operation failed. */#define POLARSSL_ERR_RSA_PRIVATE_FAILED -0x4300 /**< The private key operation failed. */#define POLARSSL_ERR_RSA_VERIFY_FAILED -0x4380 /**< The PKCS#1 verification failed. */#define POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE -0x4400 /**< The output buffer for decryption is not large enough. */#define POLARSSL_ERR_RSA_RNG_FAILED -0x4480 /**< The random generator failed to generate non-zeros. *//*
* PKCS#1 constants */#define SIG_RSA_RAW 0#define SIG_RSA_MD2 2#define SIG_RSA_MD4 3#define SIG_RSA_MD5 4#define SIG_RSA_SHA1 5#define SIG_RSA_SHA224 14#define SIG_RSA_SHA256 11#define SIG_RSA_SHA384 12#define SIG_RSA_SHA512 13#define RSA_PUBLIC 0
#define RSA_PRIVATE 1#define RSA_PKCS_V15 0
#define RSA_PKCS_V21 1#define RSA_SIGN 1
#define RSA_CRYPT 2#define ASN1_STR_CONSTRUCTED_SEQUENCE "\x30"
#define ASN1_STR_NULL "\x05"#define ASN1_STR_OID "\x06"#define ASN1_STR_OCTET_STRING "\x04"#define OID_DIGEST_ALG_MDX "\x2A\x86\x48\x86\xF7\x0D\x02\x00"
#define OID_HASH_ALG_SHA1 "\x2b\x0e\x03\x02\x1a"#define OID_HASH_ALG_SHA2X "\x60\x86\x48\x01\x65\x03\x04\x02\x00"#define OID_ISO_MEMBER_BODIES "\x2a"
#define OID_ISO_IDENTIFIED_ORG "\x2b"/*
* ISO Member bodies OID parts */#define OID_COUNTRY_US "\x86\x48"#define OID_RSA_DATA_SECURITY "\x86\xf7\x0d"/*
* ISO Identified organization OID parts */#define OID_OIW_SECSIG_SHA1 "\x0e\x03\x02\x1a"/*
* DigestInfo ::= SEQUENCE { * digestAlgorithm DigestAlgorithmIdentifier, * digest Digest } * * DigestAlgorithmIdentifier ::= AlgorithmIdentifier * * Digest ::= OCTET STRING */#define ASN1_HASH_MDX \( \ ASN1_STR_CONSTRUCTED_SEQUENCE "\x20" \ ASN1_STR_CONSTRUCTED_SEQUENCE "\x0C" \ ASN1_STR_OID "\x08" \ OID_DIGEST_ALG_MDX \ ASN1_STR_NULL "\x00" \ ASN1_STR_OCTET_STRING "\x10" \)#define ASN1_HASH_SHA1 \
ASN1_STR_CONSTRUCTED_SEQUENCE "\x21" \ ASN1_STR_CONSTRUCTED_SEQUENCE "\x09" \ ASN1_STR_OID "\x05" \ OID_HASH_ALG_SHA1 \ ASN1_STR_NULL "\x00" \ ASN1_STR_OCTET_STRING "\x14"#define ASN1_HASH_SHA1_ALT \
ASN1_STR_CONSTRUCTED_SEQUENCE "\x1F" \ ASN1_STR_CONSTRUCTED_SEQUENCE "\x07" \ ASN1_STR_OID "\x05" \ OID_HASH_ALG_SHA1 \ ASN1_STR_OCTET_STRING "\x14"#define ASN1_HASH_SHA2X \
ASN1_STR_CONSTRUCTED_SEQUENCE "\x11" \ ASN1_STR_CONSTRUCTED_SEQUENCE "\x0d" \ ASN1_STR_OID "\x09" \ OID_HASH_ALG_SHA2X \ ASN1_STR_NULL "\x00" \ ASN1_STR_OCTET_STRING "\x00"/**
* \brief RSA context structure */typedef struct{ int ver; /*!< always 0 */ size_t len; /*!< size(N) in chars */mpi N; /*!< public modulus */
mpi E; /*!< public exponent */mpi D; /*!< private exponent */
mpi P; /*!< 1st prime factor */ mpi Q; /*!< 2nd prime factor */ mpi DP; /*!< D % (P - 1) */ mpi DQ; /*!< D % (Q - 1) */ mpi QP; /*!< 1 / (Q % P) */mpi RN; /*!< cached R^2 mod N */
mpi RP; /*!< cached R^2 mod P */ mpi RQ; /*!< cached R^2 mod Q */int padding; /*!< RSA_PKCS_V15 for 1.5 padding and
RSA_PKCS_v21 for OAEP/PSS */ int hash_id; /*!< Hash identifier of md_type_t as specified in the md.h header file for the EME-OAEP and EMSA-PSS encoding */}rsa_context;#ifdef __cplusplus
extern "C" { #endif/**
* \brief Initialize an RSA context * * \param ctx RSA context to be initialized * \param padding RSA_PKCS_V15 or RSA_PKCS_V21 * \param hash_id RSA_PKCS_V21 hash identifier * * \note The hash_id parameter is actually ignored * when using RSA_PKCS_V15 padding. */void rsa_init( rsa_context *ctx, int padding, int hash_id);/**
* \brief Generate an RSA keypair * * \param ctx RSA context that will hold the key * \param f_rng RNG function * \param p_rng RNG parameter * \param nbits size of the public key in bits * \param exponent public exponent (e.g., 65537) * * \note rsa_init() must be called beforehand to setup * the RSA context. * * \return 0 if successful, or an POLARSSL_ERR_RSA_XXX error code */int rsa_gen_key( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, unsigned int nbits, int exponent );/**
* \brief Check a public RSA key * * \param ctx RSA context to be checked * * \return 0 if successful, or an POLARSSL_ERR_RSA_XXX error code */int rsa_check_pubkey( const rsa_context *ctx );/**
* \brief Check a private RSA key * * \param ctx RSA context to be checked * * \return 0 if successful, or an POLARSSL_ERR_RSA_XXX error code */int rsa_check_privkey( const rsa_context *ctx );/**
* \brief Do an RSA public key operation * * \param ctx RSA context * \param input input buffer * \param output output buffer * * \return 0 if successful, or an POLARSSL_ERR_RSA_XXX error code * * \note This function does NOT take care of message * padding. Also, be sure to set input[0] = 0 or assure that * input is smaller than N. * * \note The input and output buffers must be large * enough (eg. 128 bytes if RSA-1024 is used). */int rsa_public( rsa_context *ctx, const unsigned char *input, unsigned char *output );/**
* \brief Do an RSA private key operation * * \param ctx RSA context * \param input input buffer * \param output output buffer * * \return 0 if successful, or an POLARSSL_ERR_RSA_XXX error code * * \note The input and output buffers must be large * enough (eg. 128 bytes if RSA-1024 is used). */int rsa_private( rsa_context *ctx, const unsigned char *input, unsigned char *output );/**
* \brief Add the message padding, then do an RSA operation * * \param ctx RSA context * \param f_rng RNG function (Needed for padding and PKCS#1 v2.1 encoding) * \param p_rng RNG parameter * \param mode RSA_PUBLIC or RSA_PRIVATE * \param ilen contains the plaintext length * \param input buffer holding the data to be encrypted * \param output buffer that will hold the ciphertext * * \return 0 if successful, or an POLARSSL_ERR_RSA_XXX error code * * \note The output buffer must be as large as the size * of ctx->N (eg. 128 bytes if RSA-1024 is used). */int rsa_pkcs1_encrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, size_t ilen, const unsigned char *input, unsigned char *output );/**
* \brief Do an RSA operation, then remove the message padding * * \param ctx RSA context * \param mode RSA_PUBLIC or RSA_PRIVATE * \param olen will contain the plaintext length * \param input buffer holding the encrypted data * \param output buffer that will hold the plaintext * \param output_max_len maximum length of the output buffer * * \return 0 if successful, or an POLARSSL_ERR_RSA_XXX error code * * \note The output buffer must be as large as the size * of ctx->N (eg. 128 bytes if RSA-1024 is used) otherwise * an error is thrown. */int rsa_pkcs1_decrypt( rsa_context *ctx, int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len );/**
* \brief Do a private RSA to sign a message digest * * \param ctx RSA context * \param f_rng RNG function (Needed for PKCS#1 v2.1 encoding) * \param p_rng RNG parameter * \param mode RSA_PUBLIC or RSA_PRIVATE * \param hash_id SIG_RSA_RAW, SIG_RSA_MD{2,4,5} or SIG_RSA_SHA{1,224,256,384,512} * \param hashlen message digest length (for SIG_RSA_RAW only) * \param hash buffer holding the message digest * \param sig buffer that will hold the ciphertext * * \return 0 if the signing operation was successful, * or an POLARSSL_ERR_RSA_XXX error code * * \note The "sig" buffer must be as large as the size * of ctx->N (eg. 128 bytes if RSA-1024 is used). * * \note In case of PKCS#1 v2.1 encoding keep in mind that * the hash_id in the RSA context is the one used for the * encoding. hash_id in the function call is the type of hash * that is encoded. According to RFC 3447 it is advised to * keep both hashes the same. */int rsa_pkcs1_sign( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig );/**
* \brief Do a public RSA and check the message digest * * \param ctx points to an RSA public key * \param mode RSA_PUBLIC or RSA_PRIVATE * \param hash_id SIG_RSA_RAW, SIG_RSA_MD{2,4,5} or SIG_RSA_SHA{1,224,256,384,512} * \param hashlen message digest length (for SIG_RSA_RAW only) * \param hash buffer holding the message digest * \param sig buffer holding the ciphertext * * \return 0 if the verify operation was successful, * or an POLARSSL_ERR_RSA_XXX error code * * \note The "sig" buffer must be as large as the size * of ctx->N (eg. 128 bytes if RSA-1024 is used). * * \note In case of PKCS#1 v2.1 encoding keep in mind that * the hash_id in the RSA context is the one used for the * verification. hash_id in the function call is the type of hash * that is verified. According to RFC 3447 it is advised to * keep both hashes the same. */int rsa_pkcs1_verify( rsa_context *ctx, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig );/**
* \brief Free the components of an RSA key * * \param ctx RSA Context to free */void rsa_free( rsa_context *ctx );/**
* \brief Checkup routine * * \return 0 if successful, or 1 if the test failed */int rsa_self_test( int verbose );#ifdef __cplusplus
}#endif#endif /* rsa.h */
/*
* The RSA public-key cryptosystem * * Copyright (C) 2006-2011, Brainspark B.V. * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *//* * RSA was designed by Ron Rivest, Adi Shamir and Len Adleman. * * http://theory.lcs.mit.edu/~rivest/rsapaper.pdf * http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf */#include "polarssl/config.h"
#if defined(POLARSSL_RSA_C)
#include "polarssl/rsa.h"
#include "polarssl/md.h"#include <stdlib.h>
#include <stdio.h>/*
* Initialize an RSA context */void rsa_init( rsa_context *ctx, int padding, int hash_id ){ memset( ctx, 0, sizeof( rsa_context ) );ctx->padding = padding;
ctx->hash_id = hash_id;}#if defined(POLARSSL_GENPRIME)
/*
* Generate an RSA keypair */int rsa_gen_key( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, unsigned int nbits, int exponent ){ int ret; mpi P1, Q1, H, G;if( f_rng == NULL || nbits < 128 || exponent < 3 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
/*
* find primes P and Q with Q < P so that: * GCD( E, (P-1)*(Q-1) ) == 1 */ MPI_CHK( mpi_lset( &ctx->E, exponent ) );do
{ MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0, f_rng, p_rng ) );MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0,
f_rng, p_rng ) );if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
mpi_swap( &ctx->P, &ctx->Q );if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
continue;MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
if( mpi_msb( &ctx->N ) != nbits ) continue;MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) ); MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) ); MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) ); } while( mpi_cmp_int( &G, 1 ) != 0 );/*
* D = E^-1 mod ((P-1)*(Q-1)) * DP = D mod (P - 1) * DQ = D mod (Q - 1) * QP = Q^-1 mod P */ MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H ) ); MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) ); MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) ); MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;
cleanup:
mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
if( ret != 0 )
{ rsa_free( ctx ); return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret ); }return( 0 );
}#endif
/*
* Check a public RSA key */int rsa_check_pubkey( const rsa_context *ctx ){ if( !ctx->N.p || !ctx->E.p ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );if( ( ctx->N.p[0] & 1 ) == 0 ||
( ctx->E.p[0] & 1 ) == 0 ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );if( mpi_msb( &ctx->N ) < 128 ||
mpi_msb( &ctx->N ) > POLARSSL_MPI_MAX_BITS ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );if( mpi_msb( &ctx->E ) < 2 ||
mpi_msb( &ctx->E ) > 64 ) return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );return( 0 );
}/*
* Check a private RSA key */int rsa_check_privkey( const rsa_context *ctx ){ int ret; mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2;if( ( ret = rsa_check_pubkey( ctx ) ) != 0 )
return( ret );if( !ctx->P.p || !ctx->Q.p || !ctx->D.p )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 );
mpi_init( &H ); mpi_init( &I ); mpi_init( &G ); mpi_init( &G2 ); mpi_init( &L1 ); mpi_init( &L2 );MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) );
MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) ); MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) ); MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) ); MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) ); MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) );
MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) ); MPI_CHK( mpi_mod_mpi( &I, &DE, &L1 ) );/*
* Check for a valid PKCS1v2 private key */ if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 || mpi_cmp_int( &L2, 0 ) != 0 || mpi_cmp_int( &I, 1 ) != 0 || mpi_cmp_int( &G, 1 ) != 0 ) { ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED; }cleanup:
mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 );
mpi_free( &H ); mpi_free( &I ); mpi_free( &G ); mpi_free( &G2 ); mpi_free( &L1 ); mpi_free( &L2 );if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED )
return( ret );if( ret != 0 )
return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret );return( 0 );
}/*
* Do an RSA public key operation */int rsa_public( rsa_context *ctx, const unsigned char *input, unsigned char *output ){ int ret; size_t olen; mpi T;mpi_init( &T );
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
{ mpi_free( &T ); return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); }olen = ctx->len;
MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) ); MPI_CHK( mpi_write_binary( &T, output, olen ) );cleanup:
mpi_free( &T );
if( ret != 0 )
return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );return( 0 );
}/*
* Do an RSA private key operation */int rsa_private( rsa_context *ctx, const unsigned char *input, unsigned char *output ){ int ret; size_t olen; mpi T, T1, T2;mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );
MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
{ mpi_free( &T ); return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); }#if defined(POLARSSL_RSA_NO_CRT)
MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) );#else /* * faster decryption using the CRT * * T1 = input ^ dP mod P * T2 = input ^ dQ mod Q */ MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) ); MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) );/*
* T = (T1 - T2) * (Q^-1 mod P) mod P */ MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) ); MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) ); MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );/*
* output = T2 + T * Q */ MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) ); MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );#endifolen = ctx->len;
MPI_CHK( mpi_write_binary( &T, output, olen ) );cleanup:
mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );
if( ret != 0 )
return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );return( 0 );
}#if defined(POLARSSL_PKCS1_V21)
/** * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. * * \param dst buffer to mask * \param dlen length of destination buffer * \param src source of the mask generation * \param slen length of the source buffer * \param md_ctx message digest context to use */static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen, md_context_t *md_ctx ){ unsigned char mask[POLARSSL_MD_MAX_SIZE]; unsigned char counter[4]; unsigned char *p; unsigned int hlen; size_t i, use_len;memset( mask, 0, POLARSSL_MD_MAX_SIZE );
memset( counter, 0, 4 );hlen = md_ctx->md_info->size;
// Generate and apply dbMask
// p = dst;while( dlen > 0 )
{ use_len = hlen; if( dlen < hlen ) use_len = dlen;md_starts( md_ctx );
md_update( md_ctx, src, slen ); md_update( md_ctx, counter, 4 ); md_finish( md_ctx, mask );for( i = 0; i < use_len; ++i )
*p++ ^= mask[i];counter[3]++;
dlen -= use_len;
}}#endif/*
* Add the message padding, then do an RSA operation */int rsa_pkcs1_encrypt( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, size_t ilen, const unsigned char *input, unsigned char *output ){ size_t nb_pad, olen; int ret; unsigned char *p = output;#if defined(POLARSSL_PKCS1_V21) unsigned int hlen; const md_info_t *md_info; md_context_t md_ctx;#endifolen = ctx->len;
if( f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );switch( ctx->padding )
{ case RSA_PKCS_V15:if( olen < ilen + 11 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );nb_pad = olen - 3 - ilen;
*p++ = 0;
*p++ = RSA_CRYPT;while( nb_pad-- > 0 )
{ int rng_dl = 100;do {
ret = f_rng( p_rng, p, 1 ); } while( *p == 0 && --rng_dl && ret == 0 );// Check if RNG failed to generate data
// if( rng_dl == 0 || ret != 0) return POLARSSL_ERR_RSA_RNG_FAILED + ret;p++;
} *p++ = 0; memcpy( p, input, ilen ); break;#if defined(POLARSSL_PKCS1_V21) case RSA_PKCS_V21:md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );hlen = md_get_size( md_info );
if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );memset( output, 0, olen );
memset( &md_ctx, 0, sizeof( md_context_t ) );md_init_ctx( &md_ctx, md_info );
*p++ = 0;
// Generate a random octet string seed
// if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 ) return( POLARSSL_ERR_RSA_RNG_FAILED + ret );p += hlen;
// Construct DB
// md( md_info, p, 0, p ); p += hlen; p += olen - 2 * hlen - 2 - ilen; *p++ = 1; memcpy( p, input, ilen );// maskedDB: Apply dbMask to DB
// mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen, &md_ctx );// maskedSeed: Apply seedMask to seed
// mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1, &md_ctx ); break;#endifdefault:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, output, output ) : rsa_private( ctx, output, output ) );}/*
* Do an RSA operation, then remove the message padding */int rsa_pkcs1_decrypt( rsa_context *ctx, int mode, size_t *olen, const unsigned char *input, unsigned char *output, size_t output_max_len){ int ret; size_t ilen; unsigned char *p; unsigned char buf[1024];#if defined(POLARSSL_PKCS1_V21) unsigned char lhash[POLARSSL_MD_MAX_SIZE]; unsigned int hlen; const md_info_t *md_info; md_context_t md_ctx;#endifilen = ctx->len;
if( ilen < 16 || ilen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, input, buf ) : rsa_private( ctx, input, buf );if( ret != 0 )
return( ret );p = buf;
switch( ctx->padding )
{ case RSA_PKCS_V15:if( *p++ != 0 || *p++ != RSA_CRYPT )
return( POLARSSL_ERR_RSA_INVALID_PADDING );while( *p != 0 )
{ if( p >= buf + ilen - 1 ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); p++; } p++; break;#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21: if( *p++ != 0 ) return( POLARSSL_ERR_RSA_INVALID_PADDING );md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); memset( &md_ctx, 0, sizeof( md_context_t ) );md_init_ctx( &md_ctx, md_info );
// Generate lHash // md( md_info, lhash, 0, lhash );// seed: Apply seedMask to maskedSeed
// mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1, &md_ctx );// DB: Apply dbMask to maskedDB
// mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen, &md_ctx );p += hlen;
// Check validity
// if( memcmp( lhash, p, hlen ) != 0 ) return( POLARSSL_ERR_RSA_INVALID_PADDING );p += hlen;
while( *p == 0 && p < buf + ilen )
p++;if( p == buf + ilen )
return( POLARSSL_ERR_RSA_INVALID_PADDING );if( *p++ != 0x01 )
return( POLARSSL_ERR_RSA_INVALID_PADDING );break;
#endifdefault:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}if (ilen - (p - buf) > output_max_len)
return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );*olen = ilen - (p - buf);
memcpy( output, p, *olen );return( 0 );
}/*
* Do an RSA operation to sign the message digest */int rsa_pkcs1_sign( rsa_context *ctx, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ){ size_t nb_pad, olen; unsigned char *p = sig;#if defined(POLARSSL_PKCS1_V21) unsigned char salt[POLARSSL_MD_MAX_SIZE]; unsigned int slen, hlen, offset = 0; int ret; size_t msb; const md_info_t *md_info; md_context_t md_ctx;#else (void) f_rng; (void) p_rng;#endifolen = ctx->len;
switch( ctx->padding )
{ case RSA_PKCS_V15:switch( hash_id )
{ case SIG_RSA_RAW: nb_pad = olen - 3 - hashlen; break;case SIG_RSA_MD2:
case SIG_RSA_MD4: case SIG_RSA_MD5: nb_pad = olen - 3 - 34; break;case SIG_RSA_SHA1:
nb_pad = olen - 3 - 35; break;case SIG_RSA_SHA224:
nb_pad = olen - 3 - 47; break;case SIG_RSA_SHA256:
nb_pad = olen - 3 - 51; break;case SIG_RSA_SHA384:
nb_pad = olen - 3 - 67; break;case SIG_RSA_SHA512:
nb_pad = olen - 3 - 83; break; default: return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); }if( nb_pad < 8 )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );*p++ = 0;
*p++ = RSA_SIGN; memset( p, 0xFF, nb_pad ); p += nb_pad; *p++ = 0;switch( hash_id )
{ case SIG_RSA_RAW: memcpy( p, hash, hashlen ); break;case SIG_RSA_MD2:
memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 2; break;case SIG_RSA_MD4:
memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 4; break;case SIG_RSA_MD5:
memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 5; break;case SIG_RSA_SHA1:
memcpy( p, ASN1_HASH_SHA1, 15 ); memcpy( p + 15, hash, 20 ); break;case SIG_RSA_SHA224:
memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 28 ); p[1] += 28; p[14] = 4; p[18] += 28; break;case SIG_RSA_SHA256:
memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 32 ); p[1] += 32; p[14] = 1; p[18] += 32; break;case SIG_RSA_SHA384:
memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 48 ); p[1] += 48; p[14] = 2; p[18] += 48; break;case SIG_RSA_SHA512:
memcpy( p, ASN1_HASH_SHA2X, 19 ); memcpy( p + 19, hash, 64 ); p[1] += 64; p[14] = 3; p[18] += 64; break;default:
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); }break;
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21:if( f_rng == NULL )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );switch( hash_id )
{ case SIG_RSA_MD2: case SIG_RSA_MD4: case SIG_RSA_MD5: hashlen = 16; break;case SIG_RSA_SHA1:
hashlen = 20; break;case SIG_RSA_SHA224:
hashlen = 28; break;case SIG_RSA_SHA256:
hashlen = 32; break;case SIG_RSA_SHA384:
hashlen = 48; break;case SIG_RSA_SHA512:
hashlen = 64; break;default:
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); }md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = hlen;memset( sig, 0, olen );
memset( &md_ctx, 0, sizeof( md_context_t ) );md_init_ctx( &md_ctx, md_info );
msb = mpi_msb( &ctx->N ) - 1;
// Generate salt of length slen
// if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 ) return( POLARSSL_ERR_RSA_RNG_FAILED + ret );// Note: EMSA-PSS encoding is over the length of N - 1 bits
// msb = mpi_msb( &ctx->N ) - 1; p += olen - hlen * 2 - 2; *p++ = 0x01; memcpy( p, salt, slen ); p += slen;// Generate H = Hash( M' )
// md_starts( &md_ctx ); md_update( &md_ctx, p, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, salt, slen ); md_finish( &md_ctx, p );// Compensate for boundary condition when applying mask
// if( msb % 8 == 0 ) offset = 1;// maskedDB: Apply dbMask to DB
// mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );msb = mpi_msb( &ctx->N ) - 1;
sig[0] &= 0xFF >> ( olen * 8 - msb );p += hlen;
*p++ = 0xBC; break;#endifdefault:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}return( ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, sig ) : rsa_private( ctx, sig, sig ) );}/*
* Do an RSA operation and check the message digest */int rsa_pkcs1_verify( rsa_context *ctx, int mode, int hash_id, unsigned int hashlen, const unsigned char *hash, unsigned char *sig ){ int ret; size_t len, siglen; unsigned char *p, c; unsigned char buf[1024];#if defined(POLARSSL_PKCS1_V21) unsigned char result[POLARSSL_MD_MAX_SIZE]; unsigned char zeros[8]; unsigned int hlen; size_t slen, msb; const md_info_t *md_info; md_context_t md_ctx;#endif siglen = ctx->len;if( siglen < 16 || siglen > sizeof( buf ) )
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );ret = ( mode == RSA_PUBLIC )
? rsa_public( ctx, sig, buf ) : rsa_private( ctx, sig, buf );if( ret != 0 )
return( ret );p = buf;
switch( ctx->padding )
{ case RSA_PKCS_V15:if( *p++ != 0 || *p++ != RSA_SIGN )
return( POLARSSL_ERR_RSA_INVALID_PADDING );while( *p != 0 )
{ if( p >= buf + siglen - 1 || *p != 0xFF ) return( POLARSSL_ERR_RSA_INVALID_PADDING ); p++; } p++;len = siglen - ( p - buf );
if( len == 33 && hash_id == SIG_RSA_SHA1 )
{ if( memcmp( p, ASN1_HASH_SHA1_ALT, 13 ) == 0 && memcmp( p + 13, hash, 20 ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } if( len == 34 ) { c = p[13]; p[13] = 0;if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 )
return( POLARSSL_ERR_RSA_VERIFY_FAILED );if( ( c == 2 && hash_id == SIG_RSA_MD2 ) ||
( c == 4 && hash_id == SIG_RSA_MD4 ) || ( c == 5 && hash_id == SIG_RSA_MD5 ) ) { if( memcmp( p + 18, hash, 16 ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } }if( len == 35 && hash_id == SIG_RSA_SHA1 )
{ if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 && memcmp( p + 15, hash, 20 ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); } if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) || ( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) || ( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) || ( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) ) { c = p[1] - 17; p[1] = 17; p[14] = 0;if( p[18] == c &&
memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 && memcmp( p + 19, hash, c ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); }if( len == hashlen && hash_id == SIG_RSA_RAW )
{ if( memcmp( p, hash, hashlen ) == 0 ) return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED ); }break;
#if defined(POLARSSL_PKCS1_V21)
case RSA_PKCS_V21: if( buf[siglen - 1] != 0xBC ) return( POLARSSL_ERR_RSA_INVALID_PADDING );switch( hash_id )
{ case SIG_RSA_MD2: case SIG_RSA_MD4: case SIG_RSA_MD5: hashlen = 16; break;case SIG_RSA_SHA1:
hashlen = 20; break;case SIG_RSA_SHA224:
hashlen = 28; break;case SIG_RSA_SHA256:
hashlen = 32; break;case SIG_RSA_SHA384:
hashlen = 48; break;case SIG_RSA_SHA512:
hashlen = 64; break;default:
return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); }md_info = md_info_from_type( ctx->hash_id );
if( md_info == NULL ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA ); hlen = md_get_size( md_info ); slen = siglen - hlen - 1;memset( &md_ctx, 0, sizeof( md_context_t ) );
memset( zeros, 0, 8 );md_init_ctx( &md_ctx, md_info );
// Note: EMSA-PSS verification is over the length of N - 1 bits
// msb = mpi_msb( &ctx->N ) - 1;// Compensate for boundary condition when applying mask
// if( msb % 8 == 0 ) { p++; siglen -= 1; } if( buf[0] >> ( 8 - siglen * 8 + msb ) ) return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
buf[0] &= 0xFF >> ( siglen * 8 - msb );
while( *p == 0 && p < buf + siglen )
p++;if( p == buf + siglen )
return( POLARSSL_ERR_RSA_INVALID_PADDING );if( *p++ != 0x01 )
return( POLARSSL_ERR_RSA_INVALID_PADDING );slen -= p - buf;
// Generate H = Hash( M' )
// md_starts( &md_ctx ); md_update( &md_ctx, zeros, 8 ); md_update( &md_ctx, hash, hashlen ); md_update( &md_ctx, p, slen ); md_finish( &md_ctx, result );if( memcmp( p + slen, result, hlen ) == 0 )
return( 0 ); else return( POLARSSL_ERR_RSA_VERIFY_FAILED );#endifdefault:
return( POLARSSL_ERR_RSA_INVALID_PADDING );
}return( POLARSSL_ERR_RSA_INVALID_PADDING );
}/*
* Free the components of an RSA key */void rsa_free( rsa_context *ctx ){ mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN ); mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP ); mpi_free( &ctx->Q ); mpi_free( &ctx->P ); mpi_free( &ctx->D ); mpi_free( &ctx->E ); mpi_free( &ctx->N );}#if defined(POLARSSL_SELF_TEST)
#include "polarssl/sha1.h"
/*
* Example RSA-1024 keypair, for test purposes */#define KEY_LEN 128#define RSA_N "9292758453063D803DD603D5E777D788" \
"8ED1D5BF35786190FA2F23EBC0848AEA" \ "DDA92CA6C3D80B32C4D109BE0F36D6AE" \ "7130B9CED7ACDF54CFC7555AC14EEBAB" \ "93A89813FBF3C4F8066D2D800F7C38A8" \ "1AE31942917403FF4946B0A83D3D3E05" \ "EE57C6F5F5606FB5D4BC6CD34EE0801A" \ "5E94BB77B07507233A0BC7BAC8F90F79"#define RSA_E "10001"
#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
"66CA472BC44D253102F8B4A9D3BFA750" \ "91386C0077937FE33FA3252D28855837" \ "AE1B484A8A9A45F7EE8C0C634F99E8CD" \ "DF79C5CE07EE72C7F123142198164234" \ "CABB724CF78B8173B9F880FC86322407" \ "AF1FEDFDDE2BEB674CA15F3E81A1521E" \ "071513A1E85B5DFA031F21ECAE91A34D"#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
"2C01CAD19EA484A87EA4377637E75500" \ "FCB2005C5C7DD6EC4AC023CDA285D796" \ "C3D9E75E1EFC42488BB4F1D13AC30A57"#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
"E211C2B9E5DB1ED0BF61D0D9899620F4" \ "910E4168387E3C30AA1E00C339A79508" \ "8452DD96A9A5EA5D9DCA68DA636032AF"#define RSA_DP "C1ACF567564274FB07A0BBAD5D26E298" \
"3C94D22288ACD763FD8E5600ED4A702D" \ "F84198A5F06C2E72236AE490C93F07F8" \ "3CC559CD27BC2D1CA488811730BB5725"#define RSA_DQ "4959CBF6F8FEF750AEE6977C155579C7" \
"D8AAEA56749EA28623272E4F7D0592AF" \ "7C1F1313CAC9471B5C523BFE592F517B" \ "407A1BD76C164B93DA2D32A383E58357"#define RSA_QP "9AE7FBC99546432DF71896FC239EADAE" \
"F38D18D2B2F0E2DD275AA977E2BF4411" \ "F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \ "A74206CEC169D74BF5A8C50D6F48EA08"#define PT_LEN 24
#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \ "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"static int myrand( void *rng_state, unsigned char *output, size_t len )
{ size_t i;if( rng_state != NULL )
rng_state = NULL;for( i = 0; i < len; ++i )
output[i] = rand(); return( 0 );}/*
* Checkup routine */int rsa_self_test( int verbose ){ size_t len; rsa_context rsa; unsigned char rsa_plaintext[PT_LEN]; unsigned char rsa_decrypted[PT_LEN]; unsigned char rsa_ciphertext[KEY_LEN];#if defined(POLARSSL_SHA1_C) unsigned char sha1sum[20];#endifrsa_init( &rsa, RSA_PKCS_V15, 0 );
rsa.len = KEY_LEN;
mpi_read_string( &rsa.N , 16, RSA_N ); mpi_read_string( &rsa.E , 16, RSA_E ); mpi_read_string( &rsa.D , 16, RSA_D ); mpi_read_string( &rsa.P , 16, RSA_P ); mpi_read_string( &rsa.Q , 16, RSA_Q ); mpi_read_string( &rsa.DP, 16, RSA_DP ); mpi_read_string( &rsa.DQ, 16, RSA_DQ ); mpi_read_string( &rsa.QP, 16, RSA_QP );if( verbose != 0 )
printf( " RSA key validation: " );if( rsa_check_pubkey( &rsa ) != 0 ||
rsa_check_privkey( &rsa ) != 0 ) { if( verbose != 0 ) printf( "failed\n" );return( 1 );
}if( verbose != 0 )
printf( "passed\n PKCS#1 encryption : " );memcpy( rsa_plaintext, RSA_PT, PT_LEN );
if( rsa_pkcs1_encrypt( &rsa, &myrand, NULL, RSA_PUBLIC, PT_LEN,
rsa_plaintext, rsa_ciphertext ) != 0 ) { if( verbose != 0 ) printf( "failed\n" );return( 1 );
}if( verbose != 0 )
printf( "passed\n PKCS#1 decryption : " );if( rsa_pkcs1_decrypt( &rsa, RSA_PRIVATE, &len,
rsa_ciphertext, rsa_decrypted, sizeof(rsa_decrypted) ) != 0 ) { if( verbose != 0 ) printf( "failed\n" );return( 1 );
}if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
{ if( verbose != 0 ) printf( "failed\n" );return( 1 );
}#if defined(POLARSSL_SHA1_C)
if( verbose != 0 ) printf( "passed\n PKCS#1 data sign : " );sha1( rsa_plaintext, PT_LEN, sha1sum );
if( rsa_pkcs1_sign( &rsa, NULL, NULL, RSA_PRIVATE, SIG_RSA_SHA1, 20,
sha1sum, rsa_ciphertext ) != 0 ) { if( verbose != 0 ) printf( "failed\n" );return( 1 );
}if( verbose != 0 )
printf( "passed\n PKCS#1 sig. verify: " );if( rsa_pkcs1_verify( &rsa, RSA_PUBLIC, SIG_RSA_SHA1, 20,
sha1sum, rsa_ciphertext ) != 0 ) { if( verbose != 0 ) printf( "failed\n" );return( 1 );
}if( verbose != 0 )
printf( "passed\n\n" );#endif /* POLARSSL_SHA1_C */rsa_free( &rsa );
return( 0 );
}#endif
#endif